Сложение двоичных чисел
Рассмотрим пример решения Вычесть C92₁₆-40C₁₅ = A3B₁₅ столбиком
Выполним перевод в десятичную систему счисления вот так:
= 12∙256 + 9∙16 + 2∙1
= 3072 + 144 + 2
= 321810
Получилось: C9216 = 321810
Переведем число 321810 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 3218 | 15 | |||
| -3210 | 214 | 15 | ||
| 8 | -210 | E | ||
| 4 | ||||
Направление взгляда | ||||
В результате преобразования получилось:
| -1 | |||
| - | E | 4 | 8 |
| 4 | 0 | C | |
| A | 3 | B |
| 8 меньше C поэтому занимаем 1 в старшем разряде. |
| 18 - C = B |
| 4 - 0 -1 = 3 |
| E - 4 = A |
| Конец расчета. |
На данном калькуляторе чисел можно осуществить расчет сложения, вычитания, умножения или деления двух чисел. Причем числа могут быть записаны в разных системах счисления.
Если числа находятся в разных системах счисления, то калькулятор переведет одно из них в систему счисления другого. При этом будет показан подробный ход перевода.
Просто введите два числа и укажите их основание системы счисления. После этого нажмите кнопку "Вычислить".
После этого на экране появиться результат ввиде классического вычисления в столбик но в выбранной системе счисления.