Сложение двоичных чисел
Рассмотрим пример решения Вычесть F14A₁₆-5631₈ = 162661₈ столбиком
Выполним перевод в десятичную систему счисления вот так:
= 15∙4096 + 1∙256 + 4∙16 + 10∙1
= 61440 + 256 + 64 + 10
= 6177010
Получилось: F14A16 = 6177010
Переведем число 6177010 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 61770 | 8 | ||||||
| -61768 | 7721 | 8 | |||||
| 2 | -7720 | 965 | 8 | ||||
| 1 | -960 | 120 | 8 | ||||
| 5 | -120 | 15 | 8 | ||||
| 0 | -8 | 1 | |||||
| 7 | |||||||
Направление взгляда | |||||||
В результате преобразования получилось:
| -1 | -1 | -1 | ||||
| - | 1 | 7 | 0 | 5 | 1 | 2 |
| 5 | 6 | 3 | 1 | |||
| 1 | 6 | 2 | 6 | 6 | 1 |
| 2 - 1 = 1 |
| 1 меньше 3 поэтому занимаем 1 в старшем разряде. |
| 11 - 3 = 6 |
| 5 -1 меньше 6 поэтому занимаем 1 в старшем разряде. |
| 15 - 6 -1 = 6 |
| 0 -1 меньше 5 поэтому занимаем 1 в старшем разряде. |
| 10 - 5 -1 = 2 |
| 7 -1 = 6 |
| 1 = 1 |
| Конец расчета. |
На данном калькуляторе чисел можно осуществить расчет сложения, вычитания, умножения или деления двух чисел. Причем числа могут быть записаны в разных системах счисления.
Если числа находятся в разных системах счисления, то калькулятор переведет одно из них в систему счисления другого. При этом будет показан подробный ход перевода.
Просто введите два числа и укажите их основание системы счисления. После этого нажмите кнопку "Вычислить".
После этого на экране появиться результат ввиде классического вычисления в столбик но в выбранной системе счисления.