Сложение двоичных чисел
Рассмотрим пример решения Сложить 11101100₂+2C₁₆ = 100011000₂ столбиком
Выполним перевод в десятичную систему счисления вот так:
= 2∙16 + 12∙1
= 32 + 12
= 4410
Получилось: 1110110016 = 4410
Переведем число 4410 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 44 | 2 | ||||||
| -44 | 22 | 2 | |||||
| 0 | -22 | 11 | 2 | ||||
| 0 | -10 | 5 | 2 | ||||
| 1 | -4 | 2 | 2 | ||||
| 1 | -2 | 1 | |||||
| 0 | |||||||
Направление взгляда | |||||||
В результате преобразования получилось:
| +1 | +1 | +1 | +1 | +1 | ||||
| + | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | |||
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 + 0 = 0 |
| 0 + 0 = 0 |
| 1 + 1 = 10 |
| 0 пишем, 1 переносим |
| 1 + 1 + 1 = 11 |
| 1 пишем, 1 переносим |
| 0 + 0 + 1 = 1 |
| 1 + 1 = 10 |
| 0 пишем, 1 переносим |
| 1 + 1 = 10 |
| 0 пишем, 1 переносим |
| 1 + 1 = 10 |
| Конец расчета. |
На данном калькуляторе чисел можно осуществить расчет сложения, вычитания, умножения или деления двух чисел. Причем числа могут быть записаны в разных системах счисления.
Если числа находятся в разных системах счисления, то калькулятор переведет одно из них в систему счисления другого. При этом будет показан подробный ход перевода.
Просто введите два числа и укажите их основание системы счисления. После этого нажмите кнопку "Вычислить".
После этого на экране появиться результат ввиде классического вычисления в столбик но в выбранной системе счисления.