Сложение двоичных чисел
Рассмотрим пример решения Сложить FA94.7F₁₆+1AC.1₂₀ = FCF8.8BCCCCCCCC₁₆ столбиком
Выполним перевод в десятичную систему счисления вот так:
= 1∙400 + 10∙20 + 12∙1 + 1∙0.05
= 400 + 200 + 12 + 0.05
= 612.0510
Получилось: FA94.7F20 = 612.0510
Переведем число 612.0510 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 612 | 16 | |||
| -608 | 38 | 16 | ||
| 4 | -32 | 2 | ||
| 6 | ||||
Направление взгляда | ||||
Дробная часть числа находится умножением на основание новой системы счисления:
Направление взгляда | |
| 0. | 05*16 |
| 0 | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
| C | .8*16 |
В результате преобразования получилось:
| +1 | |||||||||||||||
| + | F | A | 9 | 4 | . | 7 | F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 6 | 4 | . | 0 | C | C | C | C | C | C | C | C | C | ||
| F | C | F | 8 | . | 8 | B | C | C | C | C | C | C | C | C |
| 0 + C = 12 |
| 0 + C = 12 |
| 0 + C = 12 |
| 0 + C = 12 |
| 0 + C = 12 |
| 0 + C = 12 |
| 0 + C = 12 |
| 0 + C = 12 |
| F + C = 1B |
| B пишем, 1 переносим |
| 7 + 0 + 1 = 8 |
| 4 + 4 = 8 |
| 9 + 6 = 15 |
| A + 2 = 12 |
| F = 15 |
| Конец расчета. |
На данном калькуляторе чисел можно осуществить расчет сложения, вычитания, умножения или деления двух чисел. Причем числа могут быть записаны в разных системах счисления.
Если числа находятся в разных системах счисления, то калькулятор переведет одно из них в систему счисления другого. При этом будет показан подробный ход перевода.
Просто введите два числа и укажите их основание системы счисления. После этого нажмите кнопку "Вычислить".
После этого на экране появиться результат ввиде классического вычисления в столбик но в выбранной системе счисления.