Сложение двоичных чисел
Рассмотрим пример решения 3CF.D₁₆*2D.C₁₆ = AE63.6C₁₆ столбиком
Введите два числа и укажите основания их систем счиcления:
x
x
Решение:
| x | 3 | C | F. | D | |||||
| 2 | D. | C | |||||||
| + | 2 | D | B | D | C | ||||
| 3 | 1 | 8 | D | 9 | |||||
| 7 | 9 | F | A | ||||||
| 0 | 0 | A | E | 6 | 3. | 6 | C |
| D * C = 9C |
| 12 пишем, 9 переносим |
| F * C + 9 = BD |
| 13 пишем, 11 переносим |
| C * C + 11 = 9B |
| 11 пишем, 9 переносим |
| 3 * C + 9 = 2D |
| D * D = A9 |
| 9 пишем, 10 переносим |
| F * D + 10 = CD |
| 13 пишем, 12 переносим |
| C * D + 12 = A8 |
| 8 пишем, 10 переносим |
| 3 * D + 10 = 31 |
| D * 2 = 1A |
| 10 пишем, 1 переносим |
| F * 2 + 1 = 1F |
| 15 пишем, 1 переносим |
| C * 2 + 1 = 19 |
| 9 пишем, 1 переносим |
| 3 * 2 + 1 = 7 |
| Конец расчета. |
Ответ: 3CF.D16 * 2D.C16 = AE63.6C16
На данном калькуляторе чисел можно осуществить расчет сложения, вычитания, умножения или деления двух чисел. Причем числа могут быть записаны в разных системах счисления.
Если числа находятся в разных системах счисления, то калькулятор переведет одно из них в систему счисления другого. При этом будет показан подробный ход перевода.
Просто введите два числа и укажите их основание системы счисления. После этого нажмите кнопку "Вычислить".
После этого на экране появиться результат ввиде классического вычисления в столбик но в выбранной системе счисления.