Расчет площади прямоугольного треугольника
Рассмотрим пример решения прямоугольного треугольника c катетом 900 и гипотенузой 9500
Введите только то что известно:
x
S=
P=
r=
R=
h=
mc=
Ответ:
a=900
b=9457.27
c=9500
5.4°
84.6°
S=4255771.5
P=19857.27
r=428.64
R=4750
h=896.04
mc=4750
Катет:
b = c2 - a2
= 95002 - 9002
= 90250000 - 810000
= 89440000
= 9457.27
Угол:
α° = arcsin
a
c
= arcsin
900
9500
= 5.4°
Радиус описанной окружности:
R =
c
2
=
9500
2
= 4750
Медиана:
Mc =
c
2
=
9500
2
= 4750
Угол:
β° = arcsin
b
c
= arcsin
9457.27
9500
= 84.6°
или:
β° = 90°-α°
= 90°-5.4°
= 84.6°
Высота:
h =
ab
c
=
900·9457.27
9500
= 895.95
или:
h = b·sin(α°)
= 9457.27·sin(5.4°)
= 9457.27·0.09411
= 890.02
или:
h = a·cos(α°)
= 900·cos(5.4°)
= 900·0.9956
= 896.04
Площадь:
S =
ab
2
=
900·9457.27
2
= 4255771.5
Радиус вписанной окружности:
r =
a+b-c
2
=
900+9457.27-9500
2
= 428.64
Периметр:
P = a+b+c
= 900+9457.27+9500
= 19857.27
Калькулятор прямоугольного треугольника позволяет вычислить все элементы треугольника. Достаточно указать два любых значения и калькулятор вычислит различными способами все недостающие углы, стороны, медианы, высоты и радиусы вписанной и описанной окружности. Дополнением к расчету является вычисление перметра и площади треугольника.
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.