Расчет площади прямоугольного треугольника
Рассмотрим пример решения прямоугольного треугольника c гипотенузой 297.25 и углом 15
Введите только то что известно:
x
S=
P=
r=
R=
h=
mc=
Ответ:
a=76.93
b=287.11
c=297.25
15°
75°
S=11043.7
P=661.29
r=33.4
R=148.63
h=74.31
mc=148.63
Катет:
a = c·sin(α°)
= 297.25·sin(15°)
= 297.25·0.2588
= 76.93
Катет:
b = c·cos(α°)
= 297.25·cos(15°)
= 297.25·0.9659
= 287.11
Угол:
β° = 90°-α°
= 90°-15°
= 75°
Радиус описанной окружности:
R =
c
2
=
297.25
2
= 148.63
Медиана:
Mc =
c
2
=
297.25
2
= 148.63
Высота:
h =
ab
c
=
76.93·287.11
297.25
= 74.31
или:
h = b·sin(α°)
= 287.11·sin(15°)
= 287.11·0.2588
= 74.3
или:
h = b·cos(β°)
= 287.11·cos(75°)
= 287.11·0.2588
= 74.3
или:
h = a·cos(α°)
= 76.93·cos(15°)
= 76.93·0.9659
= 74.31
или:
h = a·sin(β°)
= 76.93·sin(75°)
= 76.93·0.9659
= 74.31
Площадь:
S =
ab
2
=
76.93·287.11
2
= 11043.7
Радиус вписанной окружности:
r =
a+b-c
2
=
76.93+287.11-297.25
2
= 33.4
Периметр:
P = a+b+c
= 76.93+287.11+297.25
= 661.29
Калькулятор прямоугольного треугольника позволяет вычислить все элементы треугольника. Достаточно указать два любых значения и калькулятор вычислит различными способами все недостающие углы, стороны, медианы, высоты и радиусы вписанной и описанной окружности. Дополнением к расчету является вычисление перметра и площади треугольника.
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.