Расчет площади прямоугольного треугольника
Рассмотрим пример решения прямоугольного треугольника c катетом 1,75 и углом 22,5
Введите только то что известно:
x
S=
P=
r=
R=
h=
mc=
Ответ:
a=0.7247
b=1.75
c=1.894
22.5°
67.5°
S=0.6342
P=4.369
r=0.2904
R=0.947
h=0.6697
mc=0.947
Гипотенуза:
c =
b
cos(α°)
=
1.75
cos(22.5°)
=
1.75
0.9239
= 1.894
Угол:
β° = 90°-α°
= 90°-22.5°
= 67.5°
Высота:
h = b·sin(α°)
= 1.75·sin(22.5°)
= 1.75·0.3827
= 0.6697
Катет:
a = h·
c
b
= 0.6697·
1.894
1.75
= 0.7248
или:
a = c2 - b2
= 1.8942 - 1.752
= 3.587 - 3.063
= 0.5247
= 0.7244
или:
a = c·sin(α°)
= 1.894·sin(22.5°)
= 1.894·0.3827
= 0.7248
или:
a = c·cos(β°)
= 1.894·cos(67.5°)
= 1.894·0.3827
= 0.7248
или:
a =
h
cos(α°)
=
0.6697
cos(22.5°)
=
0.6697
0.9239
= 0.7249
или:
a =
h
sin(β°)
=
0.6697
sin(67.5°)
=
0.6697
0.9239
= 0.7249
или:
a =
c2 - c4- 4c2h2
2
=
1.8942 - 1.8944- 4·1.8942·0.66972
2
=
3.587 - 12.87- 4·3.587·0.4485
2
=
3.587 - 6.435
2
= 0.7247
Площадь:
S =
h·c
2
=
0.6697·1.894
2
= 0.6342
Радиус описанной окружности:
R =
c
2
=
1.894
2
= 0.947
Медиана:
Mc =
c
2
=
1.894
2
= 0.947
Радиус вписанной окружности:
r =
a+b-c
2
=
0.7247+1.75-1.894
2
= 0.2904
Периметр:
P = a+b+c
= 0.7247+1.75+1.894
= 4.369
Калькулятор прямоугольного треугольника позволяет вычислить все элементы треугольника. Достаточно указать два любых значения и калькулятор вычислит различными способами все недостающие углы, стороны, медианы, высоты и радиусы вписанной и описанной окружности. Дополнением к расчету является вычисление перметра и площади треугольника.
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.