Расчет площади прямоугольного треугольника
Рассмотрим пример решения прямоугольного треугольника c гипотенузой 400 и углом 67,5 и углом 22,5
Введите только то что известно:
x
S=
P=
r=
R=
h=
mc=
Ответ:
a=369.56
b=153.08
c=400
67.5°
22.5°
S=28286.1
P=922.64
r=61.32
R=200
h=141.43
mc=200
Катет:
a = c·sin(α°)
= 400·sin(67.5°)
= 400·0.9239
= 369.56
или:
a = c·cos(β°)
= 400·cos(22.5°)
= 400·0.9239
= 369.56
Катет:
b = c·sin(β°)
= 400·sin(22.5°)
= 400·0.3827
= 153.08
или:
b = c·cos(α°)
= 400·cos(67.5°)
= 400·0.3827
= 153.08
Радиус описанной окружности:
R =
c
2
=
400
2
= 200
Медиана:
Mc =
c
2
=
400
2
= 200
Высота:
h =
ab
c
=
369.56·153.08
400
= 141.43
или:
h = b·sin(α°)
= 153.08·sin(67.5°)
= 153.08·0.9239
= 141.43
или:
h = b·cos(β°)
= 153.08·cos(22.5°)
= 153.08·0.9239
= 141.43
или:
h = a·cos(α°)
= 369.56·cos(67.5°)
= 369.56·0.3827
= 141.43
или:
h = a·sin(β°)
= 369.56·sin(22.5°)
= 369.56·0.3827
= 141.43
Площадь:
S =
ab
2
=
369.56·153.08
2
= 28286.1
Радиус вписанной окружности:
r =
a+b-c
2
=
369.56+153.08-400
2
= 61.32
Периметр:
P = a+b+c
= 369.56+153.08+400
= 922.64
Калькулятор прямоугольного треугольника позволяет вычислить все элементы треугольника. Достаточно указать два любых значения и калькулятор вычислит различными способами все недостающие углы, стороны, медианы, высоты и радиусы вписанной и описанной окружности. Дополнением к расчету является вычисление перметра и площади треугольника.
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.