Расчет площади прямоугольного треугольника
Рассмотрим пример решения прямоугольного треугольника c катетом 132 и катетом 192
Введите только то что известно:
x
S=
P=
r=
R=
h=
mc=
Ответ:
a=132
b=192
c=233
34.5°
55.5°
S=12672
P=557
r=45.5
R=116.5
h=108.77
mc=116.5
Гипотенуза:
c = a2 + b2
= 1322 + 1922
= 17424 + 36864
= 54288
= 233
Площадь:
S =
ab
2
=
132·192
2
= 12672
Угол:
α° = arcsin
a
c
= arcsin
132
233
= 34.5°
Угол:
β° = arcsin
b
c
= arcsin
192
233
= 55.5°
Высота:
h =
ab
c
=
132·192
233
= 108.77
или:
h =
2S
c
=
2 · 12672
233
= 108.77
Радиус вписанной окружности:
r =
a+b-c
2
=
132+192-233
2
= 45.5
Радиус описанной окружности:
R =
c
2
=
233
2
= 116.5
Периметр:
P = a+b+c
= 132+192+233
= 557
Медиана:
Mc =
c
2
=
233
2
= 116.5
Калькулятор прямоугольного треугольника позволяет вычислить все элементы треугольника. Достаточно указать два любых значения и калькулятор вычислит различными способами все недостающие углы, стороны, медианы, высоты и радиусы вписанной и описанной окружности. Дополнением к расчету является вычисление перметра и площади треугольника.
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.