Расчет площади прямоугольного треугольника
Рассмотрим пример решения прямоугольного треугольника c гипотенузой 5700 и высотой 2000
Введите только то что известно:
x
S=
P=
r=
R=
h=
mc=
Ответ:
a=5274.3
b=2161.4
c=5700
67.7°
22.3°
S=5700000
P=13135.7
r=867.85
R=2850
h=2000
mc=2850
Катет:
a =
c2 + c4- 4c2h2
2
=
57002 + 57004- 4·57002·20002
2
=
32490000 + 1.0556001E+15- 4·32490000·4000000
2
=
32490000 + 5.357601E+14
2
= 5274.3
Катет:
b =
c2 - c4- 4c2h2
2
=
57002 - 57004- 4·57002·20002
2
=
32490000 - 1.0556001E+15- 4·32490000·4000000
2
=
32490000 - 5.357601E+14
2
= 2161.4
Площадь:
S =
h·c
2
=
2000·5700
2
= 5700000
Радиус описанной окружности:
R =
c
2
=
5700
2
= 2850
Медиана:
Mc =
c
2
=
5700
2
= 2850
Угол:
α° = arcsin
a
c
= arcsin
5274.3
5700
= 67.7°
Угол:
β° = arcsin
b
c
= arcsin
2161.4
5700
= 22.3°
Радиус вписанной окружности:
r =
a+b-c
2
=
5274.3+2161.4-5700
2
= 867.85
Периметр:
P = a+b+c
= 5274.3+2161.4+5700
= 13135.7
Калькулятор прямоугольного треугольника позволяет вычислить все элементы треугольника. Достаточно указать два любых значения и калькулятор вычислит различными способами все недостающие углы, стороны, медианы, высоты и радиусы вписанной и описанной окружности. Дополнением к расчету является вычисление перметра и площади треугольника.
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.