Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа 1970.8275 из десятичной в двоичную систему счисления в однобайтовое в знаковое
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Переведем число 1970.827510 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 1970 | 2 | |||||||||||
| -1970 | 985 | 2 | ||||||||||
| 0 | -984 | 492 | 2 | |||||||||
| 1 | -492 | 246 | 2 | |||||||||
| 0 | -246 | 123 | 2 | |||||||||
| 0 | -122 | 61 | 2 | |||||||||
| 1 | -60 | 30 | 2 | |||||||||
| 1 | -30 | 15 | 2 | |||||||||
| 0 | -14 | 7 | 2 | |||||||||
| 1 | -6 | 3 | 2 | |||||||||
| 1 | -2 | 1 | ||||||||||
| 1 | ||||||||||||
Направление взгляда | ||||||||||||
Дробная часть числа находится умножением на основание новой системы счисления:
Направление взгляда | |
| 0. | 8275*2 |
| 1 | .655*2 |
| 1 | .31*2 |
| 0 | .62*2 |
| 1 | .24*2 |
| 0 | .48*2 |
| 0 | .96*2 |
| 1 | .92*2 |
| 1 | .84*2 |
| 1 | .68*2 |
| 1 | .36*2 |
В результате преобразования получилось:
1970.827510 = 11110110010.11010011112
Вы указали что размер вашего числа 1 байт.
На данный момент отрицательные дробные числа не поддерживаются. Поэтому в дальнейшем переводе участвует только целая часть числа.
Уберем лишние биты с учётом знакового бита вот так:
111101100102 = 101100102
Ответ: 1970.827510 = 101100102
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.