Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа 7FD56E из шестнадцатиричной в троичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Выполним перевод в десятичную систему счисления вот так:
7∙165 + 15∙164 + 13∙163 + 5∙162 + 6∙161 + 14∙160
= 7∙1048576 + 15∙65536 + 13∙4096 + 5∙256 + 6∙16 + 14∙1
= 7340032 + 983040 + 53248 + 1280 + 96 + 14
= 837771010
= 7∙1048576 + 15∙65536 + 13∙4096 + 5∙256 + 6∙16 + 14∙1
= 7340032 + 983040 + 53248 + 1280 + 96 + 14
= 837771010
Получилось: 7FD56E16 = 837771010
Переведем число 837771010 в троичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 8377710 | 3 | |||||||||||||||
| -8377710 | 2792570 | 3 | ||||||||||||||
| 0 | -2792568 | 930856 | 3 | |||||||||||||
| 2 | -930855 | 310285 | 3 | |||||||||||||
| 1 | -310284 | 103428 | 3 | |||||||||||||
| 1 | -103428 | 34476 | 3 | |||||||||||||
| 0 | -34476 | 11492 | 3 | |||||||||||||
| 0 | -11490 | 3830 | 3 | |||||||||||||
| 2 | -3828 | 1276 | 3 | |||||||||||||
| 2 | -1275 | 425 | 3 | |||||||||||||
| 1 | -423 | 141 | 3 | |||||||||||||
| 2 | -141 | 47 | 3 | |||||||||||||
| 0 | -45 | 15 | 3 | |||||||||||||
| 2 | -15 | 5 | 3 | |||||||||||||
| 0 | -3 | 1 | ||||||||||||||
| 2 | ||||||||||||||||
Направление взгляда | ||||||||||||||||
В результате преобразования получилось:
837771010 = 1202021220011203
Ответ: 7FD56E16 = 1202021220011203
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.