Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа ACD из шестнадцатиричной в двоичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Данный перевод возможен двумя способами: прямой перевод и через десятичную систему.
Выполним прямой перевод.
Выполним прямой перевод из шестнадцатиричной в двоичную вот так:
ACD16 = A C D = A(=1010) C(=1100) D(=1101) = 1010110011012
Ответ: ACD16 = 1010110011012
Выполним перевод через десятичную систему счисления.
Выполним перевод в десятичную систему счисления вот так:
10∙162 + 12∙161 + 13∙160
= 10∙256 + 12∙16 + 13∙1
= 2560 + 192 + 13
= 276510
= 10∙256 + 12∙16 + 13∙1
= 2560 + 192 + 13
= 276510
Получилось: ACD16 = 276510
Переведем число 276510 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 2765 | 2 | ||||||||||||
| -2764 | 1382 | 2 | |||||||||||
| 1 | -1382 | 691 | 2 | ||||||||||
| 0 | -690 | 345 | 2 | ||||||||||
| 1 | -344 | 172 | 2 | ||||||||||
| 1 | -172 | 86 | 2 | ||||||||||
| 0 | -86 | 43 | 2 | ||||||||||
| 0 | -42 | 21 | 2 | ||||||||||
| 1 | -20 | 10 | 2 | ||||||||||
| 1 | -10 | 5 | 2 | ||||||||||
| 0 | -4 | 2 | 2 | ||||||||||
| 1 | -2 | 1 | |||||||||||
| 0 | |||||||||||||
Направление взгляда | |||||||||||||
В результате преобразования получилось:
276510 = 1010110011012
Ответ: ACD16 = 1010110011012
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.