Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа 7F1 из шестнадцатиричной в двоичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Данный перевод возможен двумя способами: прямой перевод и через десятичную систему.
Выполним прямой перевод.
Выполним прямой перевод из шестнадцатиричной в двоичную вот так:
7F116 = 7 F 1 = 7(=0111) F(=1111) 1(=0001) = 111111100012
Ответ: 7F116 = 111111100012
Выполним перевод через десятичную систему счисления.
Выполним перевод в десятичную систему счисления вот так:
7∙162 + 15∙161 + 1∙160
= 7∙256 + 15∙16 + 1∙1
= 1792 + 240 + 1
= 203310
= 7∙256 + 15∙16 + 1∙1
= 1792 + 240 + 1
= 203310
Получилось: 7F116 = 203310
Переведем число 203310 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 2033 | 2 | |||||||||||
| -2032 | 1016 | 2 | ||||||||||
| 1 | -1016 | 508 | 2 | |||||||||
| 0 | -508 | 254 | 2 | |||||||||
| 0 | -254 | 127 | 2 | |||||||||
| 0 | -126 | 63 | 2 | |||||||||
| 1 | -62 | 31 | 2 | |||||||||
| 1 | -30 | 15 | 2 | |||||||||
| 1 | -14 | 7 | 2 | |||||||||
| 1 | -6 | 3 | 2 | |||||||||
| 1 | -2 | 1 | ||||||||||
| 1 | ||||||||||||
Направление взгляда | ||||||||||||
В результате преобразования получилось:
203310 = 111111100012
Ответ: 7F116 = 111111100012
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.