Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа C07216 из шестнадцатиричной в двоичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Данный перевод возможен двумя способами: прямой перевод и через десятичную систему.
Выполним прямой перевод.
Выполним прямой перевод из шестнадцатиричной в двоичную вот так:
C0721616 = C 0 7 2 1 6 = C(=1100) 0(=0000) 7(=0111) 2(=0010) 1(=0001) 6(=0110) = 1100000001110010000101102
Ответ: C0721616 = 1100000001110010000101102
Выполним перевод через десятичную систему счисления.
Выполним перевод в десятичную систему счисления вот так:
12∙165 + 0∙164 + 7∙163 + 2∙162 + 1∙161 + 6∙160
= 12∙1048576 + 0∙65536 + 7∙4096 + 2∙256 + 1∙16 + 6∙1
= 12582912 + 0 + 28672 + 512 + 16 + 6
= 1261211810
= 12∙1048576 + 0∙65536 + 7∙4096 + 2∙256 + 1∙16 + 6∙1
= 12582912 + 0 + 28672 + 512 + 16 + 6
= 1261211810
Получилось: C0721616 = 1261211810
Переведем число 1261211810 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 12612118 | 2 | ||||||||||||||||||||||||
| -12612118 | 6306059 | 2 | |||||||||||||||||||||||
| 0 | -6306058 | 3153029 | 2 | ||||||||||||||||||||||
| 1 | -3153028 | 1576514 | 2 | ||||||||||||||||||||||
| 1 | -1576514 | 788257 | 2 | ||||||||||||||||||||||
| 0 | -788256 | 394128 | 2 | ||||||||||||||||||||||
| 1 | -394128 | 197064 | 2 | ||||||||||||||||||||||
| 0 | -197064 | 98532 | 2 | ||||||||||||||||||||||
| 0 | -98532 | 49266 | 2 | ||||||||||||||||||||||
| 0 | -49266 | 24633 | 2 | ||||||||||||||||||||||
| 0 | -24632 | 12316 | 2 | ||||||||||||||||||||||
| 1 | -12316 | 6158 | 2 | ||||||||||||||||||||||
| 0 | -6158 | 3079 | 2 | ||||||||||||||||||||||
| 0 | -3078 | 1539 | 2 | ||||||||||||||||||||||
| 1 | -1538 | 769 | 2 | ||||||||||||||||||||||
| 1 | -768 | 384 | 2 | ||||||||||||||||||||||
| 1 | -384 | 192 | 2 | ||||||||||||||||||||||
| 0 | -192 | 96 | 2 | ||||||||||||||||||||||
| 0 | -96 | 48 | 2 | ||||||||||||||||||||||
| 0 | -48 | 24 | 2 | ||||||||||||||||||||||
| 0 | -24 | 12 | 2 | ||||||||||||||||||||||
| 0 | -12 | 6 | 2 | ||||||||||||||||||||||
| 0 | -6 | 3 | 2 | ||||||||||||||||||||||
| 0 | -2 | 1 | |||||||||||||||||||||||
| 1 | |||||||||||||||||||||||||
Направление взгляда | |||||||||||||||||||||||||
В результате преобразования получилось:
1261211810 = 1100000001110010000101102
Ответ: C0721616 = 1100000001110010000101102
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.