Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа 77.47 из восьмеричной в двоичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Данный перевод возможен двумя способами: прямой перевод и через десятичную систему.
Выполним прямой перевод.
Выполним прямой перевод из восьмеричной в двоичную вот так:
77.478 = 7 7. 4 7 = 7(=111) 7(=111). 4(=100) 7(=111) = 111111.1001112
Ответ: 77.478 = 111111.1001112
Выполним перевод через десятичную систему счисления.
Выполним перевод в десятичную систему счисления вот так:
7∙81 + 7∙80 + 4∙8-1 + 7∙8-2
= 7∙8 + 7∙1 + 4∙0.125 + 7∙0.015625
= 56 + 7 + 0.5 + 0.109375
= 63.60937510
= 7∙8 + 7∙1 + 4∙0.125 + 7∙0.015625
= 56 + 7 + 0.5 + 0.109375
= 63.60937510
Получилось: 77.478 = 63.60937510
Переведем число 63.60937510 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 63 | 2 | ||||||
| -62 | 31 | 2 | |||||
| 1 | -30 | 15 | 2 | ||||
| 1 | -14 | 7 | 2 | ||||
| 1 | -6 | 3 | 2 | ||||
| 1 | -2 | 1 | |||||
| 1 | |||||||
Направление взгляда | |||||||
Дробная часть числа находится умножением на основание новой системы счисления:
Направление взгляда | |
| 0. | 609375*2 |
| 1 | .219*2 |
| 0 | .4375*2 |
| 0 | .875*2 |
| 1 | .75*2 |
| 1 | .5*2 |
| 1 | .0*2 |
В результате преобразования получилось:
63.60937510 = 111111.1001112
Ответ: 77.478 = 111111.1001112
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.