Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа -175600 из десятичной в двоичную систему счисления в четырехбайтовое в знаковое
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Переведем число 17560010 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 175600 | 2 | ||||||||||||||||||
| -175600 | 87800 | 2 | |||||||||||||||||
| 0 | -87800 | 43900 | 2 | ||||||||||||||||
| 0 | -43900 | 21950 | 2 | ||||||||||||||||
| 0 | -21950 | 10975 | 2 | ||||||||||||||||
| 0 | -10974 | 5487 | 2 | ||||||||||||||||
| 1 | -5486 | 2743 | 2 | ||||||||||||||||
| 1 | -2742 | 1371 | 2 | ||||||||||||||||
| 1 | -1370 | 685 | 2 | ||||||||||||||||
| 1 | -684 | 342 | 2 | ||||||||||||||||
| 1 | -342 | 171 | 2 | ||||||||||||||||
| 0 | -170 | 85 | 2 | ||||||||||||||||
| 1 | -84 | 42 | 2 | ||||||||||||||||
| 1 | -42 | 21 | 2 | ||||||||||||||||
| 0 | -20 | 10 | 2 | ||||||||||||||||
| 1 | -10 | 5 | 2 | ||||||||||||||||
| 0 | -4 | 2 | 2 | ||||||||||||||||
| 1 | -2 | 1 | |||||||||||||||||
| 0 | |||||||||||||||||||
Направление взгляда | |||||||||||||||||||
В результате преобразования получилось:
17560010 = 1010101101111100002
Вы указали что размер вашего числа 4 байт.
Дополним число знаковым битом вот так:
1010101101111100002 = 100000000000001010101101111100002
Так-как введенное Вами число отрицательное то необходимо перевести его из прямого кода в дополнительный.
Для этого сначала выполним преобразование из прямого кода в обратный инвертированием всех битов кроме знакового, затем получим дополнительный код добавлением 1 бита.
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | прямой код |
| . | . | . | . | |||||||||||||||||||||||||||||
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | обратный код |
| + | 1 | +1 бит | ||||||||||||||||||||||||||||||
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | дополнительный код |
Ответ: -17560010 = 111111111111110101010010000100002 (4 байт)
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.