Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа 17E4 из шестнадцатиричной в двоичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Данный перевод возможен двумя способами: прямой перевод и через десятичную систему.
Выполним прямой перевод.
Выполним прямой перевод из шестнадцатиричной в двоичную вот так:
17E416 = 1 7 E 4 = 1(=0001) 7(=0111) E(=1110) 4(=0100) = 10111111001002
Ответ: 17E416 = 10111111001002
Выполним перевод через десятичную систему счисления.
Выполним перевод в десятичную систему счисления вот так:
1∙163 + 7∙162 + 14∙161 + 4∙160
= 1∙4096 + 7∙256 + 14∙16 + 4∙1
= 4096 + 1792 + 224 + 4
= 611610
= 1∙4096 + 7∙256 + 14∙16 + 4∙1
= 4096 + 1792 + 224 + 4
= 611610
Получилось: 17E416 = 611610
Переведем число 611610 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 6116 | 2 | |||||||||||||
| -6116 | 3058 | 2 | ||||||||||||
| 0 | -3058 | 1529 | 2 | |||||||||||
| 0 | -1528 | 764 | 2 | |||||||||||
| 1 | -764 | 382 | 2 | |||||||||||
| 0 | -382 | 191 | 2 | |||||||||||
| 0 | -190 | 95 | 2 | |||||||||||
| 1 | -94 | 47 | 2 | |||||||||||
| 1 | -46 | 23 | 2 | |||||||||||
| 1 | -22 | 11 | 2 | |||||||||||
| 1 | -10 | 5 | 2 | |||||||||||
| 1 | -4 | 2 | 2 | |||||||||||
| 1 | -2 | 1 | ||||||||||||
| 0 | ||||||||||||||
Направление взгляда | ||||||||||||||
В результате преобразования получилось:
611610 = 10111111001002
Ответ: 17E416 = 10111111001002
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.