Перевод чисел в различные системы счисления
Рассмотрим пример перевода числа 37.021 из восьмеричной в двоичную систему счисления
Введите число:
x
Его система счисления:
Перевести в :
Решение:
Данный перевод возможен двумя способами: прямой перевод и через десятичную систему.
Выполним прямой перевод.
Выполним прямой перевод из восьмеричной в двоичную вот так:
37.0218 = 3 7. 0 2 1 = 3(=011) 7(=111). 0(=000) 2(=010) 1(=001) = 011111.0000100012
Ответ: 37.0218 = 11111.0000100012
Выполним перевод через десятичную систему счисления.
Выполним перевод в десятичную систему счисления вот так:
3∙81+7∙80+0∙8-1+2∙8-2+1∙8-3 = 3∙8+7∙1+0∙0.125+2∙0.015625+1∙0.001953125 = 24+7+0+0.03125+0.001953125 = 31.03320312510
Получилось: 37.0218 =31.03320312510
Переведем число 31.03320312510 в двоичное вот так:
Целая часть числа находится делением на основание новой системы счисления:
| 31 | 2 | |||||
| -30 | 15 | 2 | ||||
| 1 | -14 | 7 | 2 | |||
| 1 | -6 | 3 | 2 | |||
| 1 | -2 | 1 | ||||
| 1 | ||||||
Направление взгляда | ||||||
Дробная часть числа находится умножением на основание новой системы счисления:
Направление взгляда | |
| 0. | 033203125*2 |
| 0 | .06641*2 |
| 0 | .1328*2 |
| 0 | .2656*2 |
| 0 | .5313*2 |
| 1 | .063*2 |
| 0 | .125*2 |
| 0 | .25*2 |
| 0 | .5*2 |
| 1 | .0*2 |
В результате преобразования получилось:
31.03320312510 = 11111.0000100012
Ответ: 37.0218 = 11111.0000100012
- Калькулятор перевода чисел между систем счисления онлайн.
- Вы можете выполнить перевод числа из одной системы счисления в любую другую.
- Калькулятор покажет подробный ход решения.
В нашем мире существует несколько различных систем счисления. Вы, вероятно, знакомы с десятичной системой, хотя могли не знать, как она называется.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.
Десятичная система основана на 10 значащих цифрах: от 0 до 9. Чтобы записать числа больше 9, мы комбинируем несколько цифр. Например, число 10 состоит из двух цифр: 1 и 0, а число 251 — из трех: 2, 5 и 1.
Название "десятичная" происходит от того, что в этой системе используется 10 различных знаков. Если же ограничиться только двумя цифрами — 0 и 1, то мы получим двоичную систему. В троичной системе используются цифры от 0 до 2, а в восьмеричной — от 0 до 7.
Когда 10 цифр недостаточно, на помощь приходят буквы английского алфавита. Например, в шестнадцатеричной системе используются цифры от 0 до 9 и буквы от A до F.
Поскольку в алфавите всего 26 букв, максимальное основание системы счисления может достигать 36 (26 букв + 10 цифр).
Помимо десятичной, наиболее распространены двоичная и шестнадцатеричная системы, так как они тесно связаны с компьютерными технологиями. Остальные системы используются реже и в основном для решения специализированных задач.
Таким образом, существует множество систем счисления, и иногда возникает необходимость перевести число из одной системы в другую. В этом вам поможет данный калькулятор.